Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text
ثبت نشده
چکیده
Objectives: To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Methods: Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable – numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identi fied from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. Results: The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 diabetes trials, respectively. The pre cision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Conclusions: Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community.
منابع مشابه
Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text.
OBJECTIVES To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. METHODS Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test e...
متن کاملBELMiner: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences
Extracting meaningful relationships with semantic significance from biomedical literature is often a challenging task. BioCreative V track4 challenge for the first time has organized a comprehensive shared task to test the robustness of the text-mining algorithms in extracting semantically meaningful assertions from the evidence statement in biomedical text. In this work, we tested the ability ...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملExtracting Meta Statements from the Blogosphere
Information extraction systems have been recently proposed for organizing and exploring content in large online text corpora as information networks. In such networks, the nodes are named entities (e.g., people, organizations) while the edges correspond to statements indicating relations among such entities. To date, such systems extract rather primitive networks, capturing only those relations...
متن کاملارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متنکاوی در حوزه یادگیری الکترونیکی
As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...
متن کامل